TYMON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

From Monolith to
Microservices:

The Modern App Stack Migration
Guide (Spring Boot, Kafka,
Database jargon and Redis)

A modern guide to breaking monoliths into microservices using Spring Boot,
Kafka, and Redis, which accelerates agility, scale, and real-time data flow.

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

Executive Summary

Enterprise IT infrastructures face immense pressure as business demands shift rapidly in an
increasingly digital-first economy. Monolithic architectures, once the backbone of
enterprise applications, are now proving insufficient to support the dynamic needs of
modern business operations. This white paper provides a deeply analytical, technology-
forward guide to migrating from monolithic to microservices architectures, focusing on the
proven technology stack of Spring Boot, Apache Kafka, and Redis. By leveraging these
robust technologies, organizations can unlock new agility, scalability, and operational
efficiency levels, allowing them to compete effectively in the modern digital transformation.

Introduction

Digital transformation is no longer optional—74% of enterprises consider it a top-three
strategic initiative, with global spending expected to reach $3.9trillion by 2027. However,
only about 30% of cloud-enabled organizations achieve full-stack modernization; those
that do record an impressive 43% increase in revenue and a 21% boost in DevOps
automation. These figures underscore a stark reality: successful modernization requires
cloud adoption and a deeply engineered, end-to-end transformation.

Tymon Global, a top IT services provider, is purpose-built to meet this challenge. With over
a decade of experience in digital product engineering and cloud-native modernization,
Tymon engineers deliver deterministic outcomes where 66% of enterprise modernization
efforts fail without expert support. By combining precision architecture, automated delivery
pipelines, and robust data migration strategies, Tymon ensures accelerated, low-risk
modernization, positioning clients for real-time agility and measurable ROI.

https://https://tymonglobal.com/

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

1. The Limitations of Monoliths ina
Cloud-Native Era

Monolithic architectures, by definition, encapsulate all business logic, presentation layers,
data access components, and configuration artifacts within a unified deployment artifact,
typically a WAR or EAR file in the Java ecosystem. While this approach streamlines
early-stage development and accelerates time-to-first-release, it becomes increasingly
burdensome in cloud-scale, distributed environments. The structural rigidity of monoliths
inhibits core non-functional requirements such as elastic scalability, high availability, and
fault isolation.

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

1.1 Scalability Constraints

In monolithic systems, scaling a single component (e.g. the product catalog lookup or
payment gateway integration) requires horizontal duplication of the entire application
instance. This "all-or-nothing” scalability model leads to:

e Over-Provisioning: Infrastructure must accommodate peak usage across all
modules, resulting in underutilized resources during off-peak hours.

¢ Non-Linear Cost Models: Even isolated workload spikes force full-system scaling,
inflating compute, memory, and licensing costs without proportional value.

¢ Lack of Fine-Grained Auto-Scaling: Cloud-native autoscaling based on domain-
specific metrics (e.g., queue depth, IOPS, or response latency of a subsystem) is
impossible when modules are not isolated.

Contrast this with microservices, where discrete service containers scale independently in
response to demand signals captured via metrics such as Prometheus Service Level
Indicators (SLIs), where monolith to microservices migration takes place.

https://https://tymonglobal.com/service/digital-product-engineering/application-development-maintenance/

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

1.2 Deployment Bottlenecks and Blast Radius

The monolithic deployment model results in operational fragility:

« Single Deployment Artifact: Even minor changes (e.g., updating a single field
validation or a localized text string) necessitate a complete regression build and
the entire application stack redeployment.

» High Deployment Blast Radius: A failure in any module can bring down the entire
system. Hotfixes for trivial issues (e.g., Ul display bugs) carry the same downtime
and rollback risk as major backend updates.

e Complex Release Coordination: With interwoven module dependencies, release
cycles require significant pre-deployment QA coordination, typically involving
full-suite integration testing and database migration staging environments.

In contrast, containerized microservices enable atomic, versioned rollouts with rollback
guarantees using tools like Argo CD and progressive delivery techniques such as blue-green
or canary deployments.

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

1.3 Organizational Inflexibility and Conway’s Law

Monoliths tightly bind technical implementation to organizational structure. As systems
grow, so too must development teams, but this creates a coordination bottleneck:

e Merge Conflict Overhead: Multiple teams within the same repository and
deployment unit frequently contend with merge conflicts, dependency regressions,
and environment mismatches.

e Reduced Autonomy: Teams cannot deploy independently, limiting their ownership
of service-level objectives (SLOs), code quality, and time-to-market.

¢ Violation of Conway's Law Alignment: In a well-structured microservices
architecture, team boundaries reflect bounded contexts and service ownership.
Monoliths impose a one-size-fits-all structure, inhibiting parallel development.

A

Modern team topologies (e.g., stream-aligned, enabling, platform teams) rely on service
decomposition to empower autonomous delivery. Monoliths preclude this model|,
enforcing a centralized coordination pattern.

i

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

1.4 Innovation, Drag, and Technical Entropy

Monoliths suffer from increasing technical entropy over time:

Long Test Cycles: Even small code changes trigger large-scale regression suites,
slowing continuous integration pipelines and increasing cycle time.

* Delayed Feature Rollouts: The inability to ship features independently leads to
feature batching, compounding risk, and complexity per release.

e Coupled Domain Logic: Business capabilities often intermingle, making refactoring
risky and regression-prone. This hinders experimentation, A/B testing, and domain
re-architecture.

e Legacy Stack Lock-In: Monoliths frequently become bound to outdated frameworks
or runtime platforms, making upgrades and refactoring cost-prohibitive.

I

\

Innovation requires modularity, fast feedback loops, and the freedom to evolve technology
choices per bounded context. These are fundamentally incompatible with monolithic
constructs.

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

1.5 Cloud-Native Incompatibility

Perhaps most critically, monoliths are architecturally misaligned with the design principles
of modern cloud-native infrastructure:

e Poor Container Fit: Large deployment binaries exceed container best practices for
immutability and startup latency. Cold starts are slow, and memory footprints are high.

» Lack of Observability Granularity: Centralized logging, metrics, and tracing are more
problematic to segment by functionality, obscuring root-cause analysis.

¢ Ineffective Resiliency Patterns: Retry logic, timeouts, and circuit breakers cannot be
scoped to fine-grained operations, leading to system-wide cascading failures.

Cloud-native maturity requires services to be ephemeral, observable, fault-tolerant, and
scalable by design—properties monoliths inherently lack.

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

2. The Microservices Advantage

Microservices architecture represents a fundamental shift in software design, operational
model, and team structure. Rather than building applications as a single, indivisible unit,
microservices decompose the system into a suite of small, independently deployable
services, each responsible for a clearly defined business capability. This modular
approach aligns directly with cloud-native principles, enabling higher agility, resilience,
and scalability. At its core, microservices unlock the architectural flexibility required to
support the demands of modern enterprises: continuous delivery, dynamic scaling,
polyglot development, and decentralized ownership.

i
4 £

i

. Qé

TYMEN GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

2.1 Elastic Scalability and Resource Optimization

Microservices facilitate granular, horizontal scaling based on service-specific load profiles:

Service-Level Scaling: Individual services (e.g., PricingEngineService,
RecommendationEngineService) can be autoscaled independently using metrics like
CPU usage, request latency, or Kafka consumer lag. This decouples scalability from
overall application size.

Efficient Resource Allocation: Stateless services scale elastically across Kubernetes
nodes, while stateful services like order management can use persistent volume
claims (PVCs) and scale based on IOPS or disk throughpuit.

Cost Efficiency: Cloud-native platforms like AWS EKS or GKE can provision resources
on-demand (via Karpenter or Cluster Autoscaler), minimizing idle costs.
Organizations typically report a 30—-50% reduction in cloud spend by moving from
monolithic scale units to service-level scaling.

Enterprises that previously had to over-provision entire monoliths to handle peak traffic on a
few endpoints (e.g, Black Friday checkout spikes) now allocate infrastructure dynamically,
in alignment with real usage.

https://https://tymonglobal.com/

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

2.2 Accelerated Deployment Velocity and Reduced Lead Time

In a microservices environment, each service has its build, test, and deploy lifecycle:

Individual microservices can follow
Decou p|ed asynchronous development and
C|/CD deployment timelines. Changes in
InventoryService do not affect
Pipelines: PaymentService's deployment
schedule.

Deployments affect only the target
service, significantly lowering the risk of
Smaller Blast regressions across unrelated features.

RGdiUSI This allows frequent, low-risk releases
using blue-green, canary, or
progressive delivery patterns.

Teams can deliver multiple features
concurrently without blocking on a
Parallel Feature shared codebase or integration
Delivery: window. This enables business units
to run independently and rapidly
respond to market shifts.

It is used to deploy or update, and can be
reversed, minimizing downtime and
maintaining data consistency. This often
Roll Back involves techniques like the Saga pattern for
Strqtegy: distributed transactions, compensating
transactions to undo changes, and
deployment strategies such as blue-green
deployments or canary releases.

With microservices, organizations transition from quarterly release trains to on-demand,
event-driven delivery. According to DORA metrics, elite-performing teams ship multiple
deploys daily with lead times under 24 hours, which is possible only with microservice
decomposition.

i

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

2.3 Organizational Autonomy and Team Empowerment

Microservices architecture is a natural enabler of decentralized, product-oriented
team structures:

End-to-End Ownership: Teams own their code, CI/CD pipelines,
observability stack, and incident response playbook. This fosters
accountability and accelerates decision-making.

Domain Alignment: Teams are organized around business
domains (e.g., Order Management, Customer Onboording), not
technical layers. This reduces inter-team dependencies and

supports domain-driven design (DDD).

Technology Decoupling: Teams can select the most suitable
languages, databases, or libraries for their service, enabling
innovation and optimal technical fit.

This alignment improves velocity, reduces cognitive load, and lowers onboarding time
for new engineers, which are critical benefits for growing enterprises.

TYMEN GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

2.4 Engineering Fault-Tolerant Microservices with Kafka and Spring Boot

A key benefit of microservices is built-in fault containment, which improves system availability:

Service Isolation:
Failure in one service
(e.g, CouponService) does
not impact others
(e.g., CheckoutService),
provided APIs follow
timeout and circuit breaker
patterns.

Graceful Error
Handling:
Resilience patterns
such as retries,
bulkheads, backoff
strategies, and failover
queues (e.g. via Kafka
Dead Letter Topics)
localize failures.

Degraded Mode
Operations:
Systems can serve partial
functionality even during
failures (e.g., continue
checkout without
recommendation or
coupons).

By adopting microservices, organizations implement availability by design. Teams
integrate chaos engineering tools (e.g, Litmus, Gremlin) and service-level objectives
(SLOs) into their observability stack, enabling proactive detection and mitigation of
failure scenarios.

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

2.5 Microservices unlock team autonomy by decoupling tech stacks
& release cycle

Microservices eliminate the technology monoculture often imposed by monoliths:

Polyglot Architecture: Different services can be built using
the most appropriate technology for their domain—e.g., Java
Spring Boot for backend services, Python for ML inference,
and Go for high-throughput edge services.

Incremental Modernization: Legacy functionality can
be progressively rewritten without requiring full-system
re-architecture. This reduces transformation risk and
preserves delivery continuity.

Autonomous Release Cadence: Teams can independently
adopt new frameworks (e.g., upgrading from Spring Boot
2.x to 3.x) or integrate new tools (e.g., observability agents,
SDKs) without coordination overhead.

This decoupling of lifecycles empowers organizations to continuously evolve their technology
stack based on performance, security, and business needs, without waiting for a whole
monolith upgrade window.

https://https://tymonglobal.com/what-we-do/

TYMEN GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

2.6 Strategic Business Alignment and Innovation Enablement

Ultimately, microservices enable IT to become an engine of strategic differentiation:

Faster Time-to-Market: Microservices allow rapid prototyping,
experimentation, and A/B testing of features to validate business
hypotheses.

Data-Driven Decisions: Event-driven architectures expose rich
business events (e.g., OrderPlaced, UserSignedUp), fueling
real-time analytics, personalization, and customer journey insights.

Digital Ecosystem Integration: External services (e.g, third-party
payment gateways, partner APIs) can be integrated securely and
scalably via dedicated microservices, enabling composable
commerce and ecosystem monetization.

Microservices empower enterprises to respond in real-time to market changes, regulatory
demands, and customer feedback, which is essential for long-term competitiveness in the
digital economy.

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

3. The Modern Migration Stack: Spring Boot,
Kafka, Redis

Successfully migrating from monolithic architecture to microservices depends heavily on
selecting a cohesive, interoperable technology stack that supports modular service
development, high-throughput communication, and low-latency data access. The
combination of Spring Boot, Apache Kafka, and Redis has emerged as an industry-
standard trifecta for building scalable, fault-tolerant, and cloud-native enterprise
applications. Each technology brings a specific set of capabilities that, when orchestrated
together, accelerate the delivery of resilient distributed systems.

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

3.1 Spring Boot Microservices

Spring Boot is the de facto standard for building production-ready, standalone
microservices in Java. It abstracts much of the configuration complexity traditionally
associated with Spring, allowing developers to rapidly scaffold production-ready
services from day one rapidly.

 Embedded Servlet Containers: By embedding Tomcat, Jetty, or Undertow, Spring
Boot eliminates the need for external application server management. This enables
accurate microservice encapsulation, where each service is independently
deployable, versioned, and executed in isolation.

e Opinionated Auto-Configuration: The framework intelligently auto-configures
service components based on classpath entries and external properties. This
reduces manual configuration overhead, promoting consistency across teams and
services.

» Spring Cloud Ecosystem Integration: Through Spring Cloud, services gain first-class
support for microservices patterns. Key capabilities include:

Service Discovery and Registry: Via Netflix Eureka or Consul.

Load Balancing: Ribbon or Spring Cloud LoadBalancer for
resilient client-side routing.

Resilience Engineering: Circuit breakers and retries through
Resilience4j or Hystrix.

Centralized Configuration: Spring Cloud Config allows dynamic,
environment-specific config management across services.

Distributed Tracing: Spring Cloud Sleuth integrates
with Zipkin or Jaeger for end-to-end request tracing.

e Spring Boot Actuator: Offers built-in endpoints for exposing service health,
environment configurations, custom metrics, and JVM diagnostics, essential for
observability and service telemetry in production.

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

3.2 Kafka Microservices Architecture

Apache Kafka serves as the foundational backbone for event-driven communication in
distributed systems. Its append-only log architecture, fault-tolerant storage, and near
real-time processing capabilities make it ideal for decoupling microservices while
preserving data consistency and auditability.

» Partitioned, Durable Log Storage: Kafka topics are divided into partitions that
enable horizontal scalability. Brokers replicate partitions across nodes, ensuring
fault tolerance and high availability. Kafka microservices architecture can process
over 1million messages per second per broker with sub-10ms latency under
optimized workloads.

¢ High Availability and Durability Guarantees: Kafka employs configurable replication

factors, write acknowledgment policies, and log retention strategies to guarantee
exactly-once or at-least-once delivery semantics, based on use case requirements.

e Stream Processing and Stateful Computation:

ksqlDB: Windowing, joins,
Kafka Streams API: Provides an SQL-based aggregations:
Enables the development . . 99 . d .
. . abstraction of Kafka topics Enable rich real-time
of lightweight stream . .
. L for declarative stream analytics use cases (e.g.,
processing logic within . . .
. querying and session tracking, fraud
Java services. . .
transformation. detection).

e Extensive Connector Ecosystem: Kafka Connect integrates with RDBMS (using
CDC tools like Debezium), NoSQL databases, file systems, cloud storage, and
search engines. This accelerates event sourcing, change propagation, and data
replication.

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

3.3 Redis for Real-Time Data Access

Redis is a high-throughput, in-memory data platform engineered for ultra-low-latency
access patterns in modern microservice architectures. Its rich data model, linear
scalability, and operational simplicity make it a foundational component in real-time
systems requiring millisecond responsiveness and distributed state management.

Versatile Native Data Structures

Redis goes beyond simple key-value semantics by supporting advanced data structures
that unlock specific microservice patterns:

— — .
Lists for task Sorted Sets for Bitmaps/HyperLogLo
queues and leaderboard gs for compact

stream computations, sliding tracking and
buffers. window analytics, approximate
and prioritized cardinality analysis
r queues. r_ at scale.
Hashes Streams
— represent for append—L _J
object-like data only event ingestion
such as user pipelines are used
profiles, cart with Kafka for
sessions, or lightweight
L metadata. Lmess<:1ge brokering.

Production-Grade Availability and Scalability

Redis Sentinel enables automatic failover and continuous monitoring in master-replica
deployments, ensuring service continuity without operator intervention. Redis Cluster
supports horizontal data sharding across nodes with automatic slot rebalancing,
achieving elastic throughput scaling into millions of ops/sec.

» With a well-tuned deployment (e.g., via Kubernetes StatefulSets or Terraform-
Terraform-managed clusters), Redis consistently delivers <Ims latency under high
concurrency, making it ideal for critical-path data flows.

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

High-Impact Use Cases Across Microservices

¢ Session Caching: Offloads user session and identity data from relational stores,
enabling high-speed, stateless service communication.

e Geospatial Queries: Supports real-time geo-fencing, location ranking, and
proximity-based services using GEO* commands.

» Pub/Sub & Streams: Facilitates lightweight asynchronous messaging and
distributed event propagation without the overhead of full message queues.

¢ API Edge Caching: Enables near-instant lookups in APl gateways by caching rate
limits, configuration payloads, and static service metadata.

Durability and Disaster Recovery

Redis supports configurable persistence models for fault-tolerant operation:

Tymon Global delivers production-grade Redis clusters using Sentinel or Cluster mode with
full container orchestration. Their deployments include TLS, ACLs, and enterprise-grade
security. Real-time observability is integrated via Prometheus and Grafana. Disaster
recovery is enabled through automated RDB backups and cross-region replication.

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

4. Architectural Patterns and Migration Roadmap

Modernizing a legacy monolith into a microservices-based system is not a one-size-fits-all
endeavor. It requires a carefully sequenced, context-aware migration strategy that
minimizes disruption while maximizing business value. The following patterns and roadmap
phases are widely validated in production-scale transformations and are the scaffolding for
executing controlled, iterative application modernization services.

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

4.1 Sstrangler Fig Pattern: Controlled Incrementalism

Inspired by Martin Fowler's "Strangler Fig" metaphor, this pattern allows teams to
incrementally carve out functionality from the monolith by introducing a reverse proxy
or APl Gateway (e.g, Kong, AWS APl Gateway, or NGINX) as an abstraction layer.
Depending on feature maturity and readiness, this gateway routes incoming traffic to
legacy endpoints or new microservices.

Implementation Details:

e Routing Logic: Use path-based routing or feature flags to control traffic redirection.

« Session Handling: Maintain session stickiness or implement shared storage (e.g., Redis)
to manage authentication across hybrid deployments.

e Zero Downtime Cutovers: Employ blue-green or canary strategies at the gateway to
safely shift traffic to new microservices without impacting end-users.

Business Example: Using this approach, a leading e-commerce brand decomposed its
legacy checkout module into a Cart Service, Payment Service, and Order Orchestrator.
Over 16 weeks, user traffic was gradually rerouted without downtime, reducing cart
abandonment rates by 12%.

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

4.2 Domain-Driven Design (DDD): Decoupling by Business Function

Before extracting microservices, enterprises must map their domains accurately.
Domain-Driven Design (DDD) introduces the concept of bounded contexts, logical
boundaries within which a particular model is defined and applicable.

Steps to Execute:

¢ Event Storming Workshops: Cross-functional sessions with developers, architects, and
business stakeholders help surface event flows and core aggregates.

e Ubiquitous Language: Establish a shared vocabulary per bounded context to reduce
cognitive load and miscommunication.

» Decentralized Datastores: Each service owns its data, typically backed by a polyglot
persistence approach, e.g., PostgreSQL for Orders, MongoDB for Catalogs.

Migration Consideration: Avoid anti-patterns like the "shared database” trap. Even read-only
data coupling can become a scaling liability.

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

4.3 Event-Driven Architecture: Loose Coupling at Scale

In microservices, synchronous HTTP calls can lead to tight coupling, cascading failures,
and latency spikes. Kafka-based event-driven patterns decouple service lifecycles,
enable reactive flows, and support real-time processing pipelines.

Key Practices:

 Topic Design: Structure Kafka topics by event granularity and domain (e.g,,
order.created, inventory.reserved). Use schema evolution practices with tools like
Confluent Schema Registry.

¢ CQRS Model: Command and Query Responsibility Segregation enables services to emit
events (command side) and build optimized read models (query side)
asynchronously.

* Replayability: Kafka's log persistence allows consumers to rewind and reprocess
historical events, enabling use cases like fraud re-evaluation or state rebuild.

N SN N NN

N NN

N\ N\

Enterprise Case: A global travel booking platform offloaded 120M daily requests to Kafka
Streams-backed real-time aggregators, enabling predictive pricing and reducing request
latency by 43%.

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

4.4 DevOps, Containers, and Progressive Delivery

Microservices require infrastructure that supports frequent releases and elastic scaling.
Kubernetes and GitOps workflows are central to achieving operational maturity.

Best Practices:

e Containerization: Each Spring Boot service is packaged as a lightweight Docker image.
Multi-stage builds reduce image size and attack surface.

e Helm + Argo CD: Helm charts define service configurations, while Argo CD promotes
changes through a Git-based source-of-truth, enabling auditable deployments.

 Progressive Delivery: Combine feature flags (e.g., LaunchDarkly), traffic mirroring, and
canary rollouts to test in production safely.

O &

v o

Security Tip: Integrate automated security checks using tools like Snyk, Trivy, or SonarQube
in CI/CD pipelines to catch vulnerabilities before release.

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

5. The Cloud-Native Operating Model:
A New Paradigm

Cloud-native microservices development is not solely a technological change, it requires
a fundamental transformation in how IT operations are managed.

https://https://tymonglobal.com/service/digital-product-engineering/cloud-computing/cloud-native-development/

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

Containerization (Docker & Kubernetes):

Containerization abstracts the underlying infrastructure, allowing microservices to run
consistently across environments. Kubernetes orchestrates deployment, autoscaling, and
fault recovery, enabling declarative service management. This model improves portability
across cloud providers and streamlines resource utilization. Docker and Kubernetes form
the operational backbone of scalable, resilient microservices.

API Gateways (Istio, Kong):

APl gateways provide a centralized layer for traffic management, authentication,
authorization, and rate limiting across microservices. Solutions like Istio offer service mesh
capabilities such as mutual TLS, traffic splitting, and retries without modifying application
code. Kong and similar gateways simplify versioning and expose APIs securely to internal
and external consumers. This abstraction improves service governance while maintaining

agility.

API

i

TYM®N GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

Observability Stack (Prometheus, ELK, Grafana, OpenTelemetry):

Modern observability combines metrics, logs, traces, and events into a unified telemetry
layer. Prometheus and Grafana deliver real-time performance metrics, while the ELK stack
aggregates logs for deep troubleshooting. OpenTelemetry standardizes instrumentation
across services, providing end-to-end visibility in distributed environments. These tools
enable proactive monitoring, SLA tracking, and rapid root cause analysis.

DevSecOps Pipelines:

DevSecOps integrates security into every stage of the development lifecycle—shift-left
scanning, policy enforcement, and automated compliance validations. Continuous delivery
pipelines embed static analysis (SAST), dynamic testing (DAST), and container vulnerability
checks. Tools like GitHub Actions, Jenkins, and Argo CD enforce secure, traceable deployment
workflows. This ensures rapid delivery without compromising regulatory or security postures.

A
<

Top cloud-native solutions providers like Tymon Global operate Cloud-native works to
foster agility, reduce time-to-market, and reinforce organizational resilience in an era of
modernization.

https://https://tymonglobal.com/

TYMEN GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

6. The Tymon Global Advantage: Engineering-Led

Modernization at Enterprise Scale

Tymon Global delivers modernization as an engineered system, fusing deep domain
expertise with production-grade architecture patterns and platform automation. Our
modernization engagements follow a precision-engineered lifecycle:

¢ Legacy System Reverse Engineering & Architecture Mapping

Using static and dynamic code analysis, Tymon reverse-engineers legacy application
internals, mapping domain boundaries, coupling levels, and system integration points.

Output artifacts include service decomposition blueprints, data ownership models,
and cloud-readiness assessments.

e Domain-Driven Service Partitioning

Through event-storming workshops and bounded context modeling, Tymon facilitates

accurate decomposition of monoliths into independently deployable services.

Microservices are defined around high-cohesion, low-coupling principles using event-

first or API-first interaction contracts.

¢ Platformized Microservices Engineering

Tymon engineers adopt Spring Boot to scaffold stateless, self-contained services with
resilience patterns (circuit breakers, retries), distributed tracing (OpenTelemetry), and

observability via actuator endpoints. Kafka is implemented as the central nervous
system for asynchronous communication, while Redis is integrated for stateful
caching, distributed locks, and pub/sub synchronization.

TYMEN GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

e Secure CI/CD and GitOps Delivery Models

Tymon builds hardened DevSecOps pipelines using GitHub Actions, Jenkins, and Argo
CD. These include SAST/DAST tooling, image vulnerability scanning (Trivy, Grype),
policy-as-code enforcement (OPA/Gatekeeper), and canary/blue-green release
strategies over Kubernetes. Helm and Kustomize are used to template infrastructure
across dey, staging, and production.

e Zero-Downtime Data Modernization

Using Debezium and Kafka Connect, Tymon establishes CDC pipelines to synchronize
legacy RDBMS data with modern polyglot persistence stores (PostgreSQL, MongoDB,
Redis). Dual-write and reconciliation patterns ensure data parity during phased
migration with automated rollback guards.

e Enterprise Observability & Governance Enablement

Tymon integrates Prometheus, Grafana, Loki, and Elasticsearch for real-time
observability. Custom SLIs, SLOs, and latency error budgets are defined per service,
enabling engineering teams to operate under a measurable error budget framework.
Platform governance is enforced via internal service catalogs and RBAC-enforced
developer portals.

With this engineered, end-to-end modernization capability, Tymon Global ensures deterministic
outcomes, auditability, and architectural alignment with enterprise SLAs, compliance, and long-
term operational resilience.

TYM®ON GLOBAL

MODERNIZING TODAY | INNOVATING TOMORROW

7. Engineering Tomorrow's Microservices with
Tymon Global

Moving from monolithic applications to a microservices-based, cloud-native architecture
is a transformative journey. By adopting Spring Boot, Kafka, and Redis within a structured,
incremental roadmap, enterprises can achieve unprecedented agility, scalability, and
resilience. Coupled with robust DevSecOps practices and comprehensive observability,
this migration unlocks measurable business benefits from accelerated deployments to
significant cost savings. Organizations can confidently navigate this complex
transformation through Tymon Global's deep domain expertise and proven delivery
methodologies, ensuring technology investments drive sustainable competitive
advantage.

About Tymon Global

Tymon Global is a U.S.-based leader in enterprise digital transformation, application
modernization, cloud-native engineering, and data-driven innovation. We serve clients
across financial services, healthcare, logistics, manufacturing, and retail sectors, delivering
complex modernization programs that fuel long-term growth and resilience.

Contact Tymon Global today for a confidential assessment
and tailored modernization roadmap that aligns technology
investment with measurable business outcomes.

https://https://tymonglobal.com/contact/

